首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41948篇
  免费   5232篇
  国内免费   1969篇
电工技术   1178篇
技术理论   8篇
综合类   2317篇
化学工业   16332篇
金属工艺   2895篇
机械仪表   943篇
建筑科学   2285篇
矿业工程   818篇
能源动力   2646篇
轻工业   2055篇
水利工程   289篇
石油天然气   2146篇
武器工业   153篇
无线电   2049篇
一般工业技术   9490篇
冶金工业   2604篇
原子能技术   371篇
自动化技术   570篇
  2024年   116篇
  2023年   987篇
  2022年   1366篇
  2021年   1581篇
  2020年   1623篇
  2019年   1535篇
  2018年   1448篇
  2017年   1657篇
  2016年   1754篇
  2015年   1633篇
  2014年   2445篇
  2013年   2600篇
  2012年   3040篇
  2011年   3440篇
  2010年   2593篇
  2009年   2618篇
  2008年   2052篇
  2007年   2510篇
  2006年   2613篇
  2005年   2132篇
  2004年   1765篇
  2003年   1593篇
  2002年   1237篇
  2001年   863篇
  2000年   743篇
  1999年   574篇
  1998年   499篇
  1997年   348篇
  1996年   317篇
  1995年   273篇
  1994年   249篇
  1993年   178篇
  1992年   145篇
  1991年   114篇
  1990年   105篇
  1989年   58篇
  1988年   42篇
  1987年   47篇
  1986年   31篇
  1985年   57篇
  1984年   46篇
  1983年   45篇
  1982年   25篇
  1981年   4篇
  1980年   13篇
  1977年   2篇
  1976年   4篇
  1963年   1篇
  1959年   5篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
21.
杨立宁  郑东昊  王立新  杨光 《化工进展》2022,41(11):5961-5967
以具有轻质高强优异性能的蜻蜓翅脉结构为设计灵感,在分析翅脉网格结构抗冲击原理的基础上,设计了传统和仿生两类对比结构。采用熔融挤出3D打印机成功制备了具有不同结构的连续碳纤维增强聚乳酸复合材料试样,并对不同结构复合材料试样的拉伸性能和抗冲击性能进行了测试和对比分析。研究分析结果表明:由于拉伸力方向上的连续碳纤维含量相对较少,限制了仿生结构复合材料抗拉强度的提高,但仿生结构的平均抗拉强度为传统结构的1.18倍;当仿生结构复合材料试样受到冲击力时,其内部六边形结构的连接角度会发生变化,从而极大消耗冲击能量,同时具有六边形网格结构的连续碳纤维可以有效阻碍裂纹的扩展,因此仿生结构的平均冲击韧性可以达到传统结构的2.46倍;仿生蜻蜓翅脉结构可以显著提高增材制造复合材料的综合力学性能,且对于抗冲击性能的提高具体突出效果。连续碳纤维增强树脂基复合材料的有效可行的仿生蜻蜓翅脉结构设计和增材制造,可极大扩展其在高冲击载荷领域中的相应应用。  相似文献   
22.
Heteroatomic doping is an effective way to optimize the electronic structure of carbon nitride to boost photocatalytic performance. However, the extra introduced defects could result in the decrease of its crystallinity. In this work, crystalline K–I co-doped carbon nitride (K–I–CCN) was simply synthesized from molten salt ionthermal post-calcination in nitrogen atmosphere. Structure characterization results indicate that compared to K–CCN synthesized from conventional molten salt heat treatment in air, nitrogen heating atmosphere is more conductive for the formation of homogeneous pore structure of the catalyst, which has larger surface area and pore volume, while could repairing some defects and resulting in better polymerization crystallization. In addition, except the implanting of K, I doping is still retained after nitrogen heat treatment, thus forming K–I co-doping structure. Due to the positive charge effect of K–I co-doping, K–I–CCN has a narrower band gap, higher surface charge density and stronger charge transport, so it performs significantly enhanced photocatalytic H2 evolution activity from water splitting.  相似文献   
23.
In the present work, nitrogen doped hierarchically activated porous carbon (APC) samples have been synthesized via single step scalable method using ethylene di-amine tetra acetic acid (EDTA) as precursor and KOH as activating agent. Activated porous carbons with different pore sizes have been developed by varying the activation temperature. SEM, TEM and SAXS analysis suggest that with variation of activation temperature, a hierarchical porous structure with interconnected meso-pore and micro pores has been achieved. The sufficiently high surface area of the synthesized materials provides active sites to enhance the diffusion of ions between the electrolyte and the carbon electrodes. The electrode prepared at 800 °C activated sample exhibited highest specific capacitance of 274 Fg-1 in two electrode setup, at a current density of 0.1 Ag-1 in 1 M aqueous H2SO4. Along with this, it showed maximum energy density of 9.5 Whkg?1 at a power density of 64.5 Wkg-1. The remarkable electrochemical performance reveals that the synthesized nitrogen doped activated carbon electrodes derived from EDTA can be tuned to have optimum pore structure and pore size distribution for better electrochemical performance, so it can be considered as a potential electrode material for applications in electrochemical energy storage.  相似文献   
24.
The increased use of fossil fuels in the transportation sector has led to an exponential rise of carbon dioxide in the atmosphere. The carbon dioxide (CO2) is the major cause of global warming resulting in climate change and extreme weather conditions. This study explores the ways of reducing the CO2 emission from the exhaust of a common rail engine. The reduction in CO2 emissions were achieved by a combination of methods. It includes the use of low carbon biofuels (cedarwood oil (CWO), and wintergreen oil (WGO)), induction of zero-carbon, hydrogen in the intake manifold and a zeolite-based after-treatment system. In diesel, CWO and WGO were blended 20% by volume and experiments were conducted at different load conditions. The results shows that 20% blending of winter green oil resulted in maximum CO2 reduction of 20% as compared to diesel. The emission was further reduced with the induction of hydrogen along with the after-treatment system. It is seen that a maximum of 54% reduction in CO2 emission could be achieved with the combination for WGO in comparison to diesel without much affecting the other emissions and performance parameters.  相似文献   
25.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
26.
This study investigated the zinc oxide (ZnO) based heterojunction photocatalysts for improved hydrogen production from water splitting. A sol-gel route was adopted to produce terbium (Tb) and samarium (Sm) co-doped ZnO/CNTs composites where CNTs worked as a support material. The built-in redox couples of lanthanides in co-doped TS-ZnO/CNTs composite showed higher hydrogen evolution activity than Sm doped (Sm-ZnO/CNTs) and Tb doped (Tb–ZnO/CNTs) photocatalysts. When triethanolamine was utilized as a sacrificial agent, the TS-ZnO/CNTs photocatalyst result in a remarkable hydrogen evolution rate of 2683 molh?1g?1 under visible light illumination. The optimum photocatalyst also showed high stability over five successive hydrogen evolution cycles. The better hydrogen evolution rate with TS-ZnO/CNTs was referred to its fine particle size, high reactive surface area, small optical band gap, suppressed reunification of charge carriers and built-in redox couples. The photocatalytic mechanism, involved in water splitting with TS-ZnO/CNTs photocatalyst, is also deduced in this study. This study can stimulate the attempts towards construction of lanthanides based co-doped semiconductor photocatalysts for efficient hydrogen evolution.  相似文献   
27.
Carbon-based materials have been often employed as electrocatalytic substrates because of their large surface area/highly porous structure. Similar to carbon substrates, the non-carbon related materials such as transition metals also play an important role in improving catalytic performance. However, the simultaneous synthesis and metallic functionalization of carbon substrates is a highly challenging issue. Herein, a hydrothermal method has been used for the preparation of Ni-functionalized porous carbon balls. The significant role of Ni2+ ions in the synthesis of porous carbon balls has been confirmed. The results of transmission electron microscopy indicate that, the as-prepared porous carbon balls were suitable for the dispersion of Pt nanoparticles with small particle size (less than 4 nm). In addition to providing the OHads species, the Ni can also modify the surface electronic structure of Pt. Electrochemical measurements results reveal that, under the strong interactions between Ni and Pt, the as-prepared porous carbon balls supported Pt nanoparticles (Pt/Ni-CB) catalyst possesses excellent electrocatalytic activity, stability and CO anti-poisoning capability towards methanol electrooxidation reaction (MOR). This work opens a novel idea for the construction of the metal functionalization of carbon substrates and their subsequent applications in other electrocatalytic reactions.  相似文献   
28.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
29.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   
30.
Adsorbents and membranes consisting of carbon nanotube (CNT) pores with diameters of molecular dimensions are highly desirable for hydrogen storage and selective, high-flux membrane separation. However, fabrication of such materials with precise pore sizes and monodispersity as well as evaluation of the mechanisms associated to adsorption and molecular transport are challenging. Herein, we grew aluminophsphate zeolites (CoAPO-5, AFI crystal structure) consisting of one-dimensional, monodisperse parallel pores with diameter of ~7 Å, and utilized them as templates to grow singe-walled CNTs (SWNTs) inside the pores. The resulting materials were examined as adsorbents and membranes for hydrogen storage and separation, respectively, using single-gas and real mixture feeds. Detailed mechanistic analysis and fundamental investigation of permeance and adsorption behavior of the resulting CNT-in-zeolite systems via combined adsorption, equilibrium, and kinetic studies were carried out. A superior gravimetric hydrogen uptake of 1.2 wt% at 35 °C and 1 bar was achieved in the case of the SWNTs grown in the cobalt-richer AFI host. Permeability measurements were performed on the respective Co(x)APO@SWNT membranes with the Co-richAPO@SWNT membrane exhibiting the highest permeance for all studied gases as a consequence of larger and more densely packed AFI crystals along with higher number of SWNT-filled pores, assets attributed to the higher Co catalyst content. Notably, the produced composite membranes exhibited gas permeability values that were two orders of magnitude higher than what predicted by the Knudsen mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号